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Abstract
Multiunit neural activity occurs often in electrophysiological studies when utilizing extracellular electrodes. In order to estimate
the activity of the individual neurons each action potential in the recording must be classified to its neuron of origin. This paper
compares the accuracy of two traditional methods of action potential classification—template matching and principal
components—against the performance of an artificial neural network (ANN). Both traditional methods use averages of action
potential shapes to form their corresponding classifiers while the artificial neural network ‘learns’ a nonlinear relationship
between a set of prototype action potentials and assigned classes. The set of prototypic action potentials and the assigned
classes is termed the training set. The training set contained action potentials from each class which exhibited the full range of
amplitude variability. The ANN provided better classification results and was more robust in analysis of across-animal data sets
than either of the traditional action potential classification methods.

Introduction
Background

In insects, chemosensory neurons are grouped together into
distinct organs called sensilla that are located on mouth-
part appendages. Although each chemosensory cell acts
independently and responds to different compounds, it is
often not feasible to record electrophysiologically from
single sensory neurons. Instead, responses of several
neurons are recorded from the entire sensillum via a
single electrode, and therefore appear multiplexed on a
single record. Accordingly, action potential (AP) classifiers
must be employed to identify single neuronal APs in the
multi-neuronal signal. The AP frequencies in the separated
channels then quantify the activity levels of the individual
sensory neurons.

Several AP classification techniques have been dev-
eloped to separate similar-shaped APs in single recordings.
Wheeler (1999) groups such schemes into template matching
and principal components schemes. Hanson et al. (1986)
developed a template-matching algorithm that was later
incorporated into a software package (SAPID) (Smith et al.,
1990) that is often used in insect chemosensory studies. Each
of  these classification algorithms has limitations, however,
and therefore we have developed a new design that employs
an artificial neural network (ANN) (Wasserman, 1989). The
ANN is ‘trained’ using prototype action potentials from

averages of individual trials, thereby relieving the operator
from making decisions about AP classes, an ever-present
source of bias.

Classification problem

We developed this classifier to determine the neural coding
performed by the two taste organs, the lateral and medial
maxillary styloconica, that are the primary contributors to
the feeding decision center of the larval tobacco hornworm,
Manduca sexta (Waldbauer, 1962; deBoer and Hanson,
1987). Each of these sensilla contains four taste neurons, so
the across-fiber activity levels of eight sensory neurons
(16 bilaterally) provide the primary inputs to the feeding
behavior control center (deBoer and Hanson, 1987;
Zacharuk and Shields, 1990).

Previous investigations have identified chemical com-
pounds that selectively activate individual neurons within a
sensillum (Peterson et al. 1993). Therefore we will refer to
each identified neuron using the name of that chemical
compound (e.g. medial inositol neuron), and to the
corresponding chemical as the ‘reference compound’.
Electrophysiological records of the eight medial and lateral
taste neurons are identified by reference  compounds in
Figure 1.

Discernible differences exist among the observed shapes
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of the APs produced by the four neurons of a sensillum.
These differences are easily seen in Figure 2, which contains
a plot of the averaged AP shapes (‘exemplar APs’) obtained
from an ensemble of hundreds of APs from many trials of
responses to the reference compound by the same insect.
The time course of each of the four exemplar APs for the
medial sensillum is depicted in Figure 2. The representation
of each AP corresponds to the ensemble average at  32
amplitude samples (with linear interpolation between
samples) taken at 100 µs intervals (10 kHz sampling rate) for
3.2 ms. The exemplar AP of each of the four neurons has a
distinct shape, with the inositol neuron producing the largest
amplitude AP and the KCl neuron producing the smallest.
While classification of the exemplar APs is a simple task,
classification of the individual APs which constitute the
ensemble is much more difficult because of their variability.
The amplitude distributions of each AP type overlap one
or more of the others at some of the 32 sample points. As
is evident in Figure 2, the peak value offers the largest
difference in amplitude for the exemplars, yet there is
considerable overlap within the amplitude distributions
(Figure 3). The objective of the present study was to identify
a classification algorithm that   possesses the   greatest
separation ability despite these overlaps in AP shape. In
determining a ‘best’ method for classification, an additional
consideration was that the method should require little or
no operator involvement during the routine classification
process to optimize speed and minimize potential operator
bias.

One problem for classifiers is the change of AP amplitude

during a trial. For the medial inositol neuron, for example,
the  phasic or  transient  response  occurs  within the first
50–150 ms of stimulation and then settles into the steady
state, or tonic, phase of the trial (Figure 4). During the
phasic portion, a steady increase in AP amplitude can be
observed in conjunction with a time-dependent firing rate.
The increasing amplitude will result in misclassification of
the first few APs of an inositol trial because they resemble
the exemplar AP of  the glucose neuron more closely than
the inositol neuron. The conventional method of dealing

Figure 1 Segments (0.25 s) of AP trains elicited by the application of specific reference compounds for each of the eight taste neurons that constitute the
two maxillary styloconic taste receptors. The plots along the top row were recorded from the lateral sensillum while those along the bottom row are
associated with the medial sensillum.

Figure 2 The ensemble averages of the four classes of APs associated with
the medial taste sensillum. All of the waveforms are biphasic and have
returned to the baseline within 6.4 ms (64 sample points). The first 32
samples of each waveform are used as templates for the template matching
classifier and to form the covariance matrix of the PC classifier.

532 J.P. Stitt et al.

 by guest on O
ctober 3, 2012

http://chem
se.oxfordjournals.org/

D
ow

nloaded from
 

http://chemse.oxfordjournals.org/


with this problem has been to avoid the phasic portion by
ignoring the first 50–150 ms of a trial (Frazier and Hanson,
1986; Roessingh et al., 1997). Thus, accommodating  to
changing AP shapes would also be a desirable property of a
classification method.

Here we compare the results of these three classification
methods operating on the same set of APs, taking data from
both the phasic and tonic phases of each recording. In
addition, we compare across-animal applicability of the
classification techniques to determine robustness of the
various classification schemes.

Conventional classification methods

Many different AP classification techniques are available,
ranging from simple threshold discriminators to complex
software algorithms (Frazier and Hanson 1986; Wheeler,

1999). Here we discuss two of the most widely used
computer techniques, template matching and principal com-
ponents analysis, and compare them to a novel method
which employs an ANN.

In the following discussions, all exemplars and APs are
represented as 32-element column vectors whose elements
are a sequence of amplitude samples over 3.2 ms of an AP
train of one second duration. Vectors are shown as
lower-case bold-faced characters (e.g. xj the jth AP of a trial)
and matrices are set as upper-case bold-faced characters
(e.g. X is a 32 × M matrix, where M is the number of APs in
the corresponding trial). The transpose of a vector or matrix
is indicated by a superscript T (e.g. xj

T represents a row
vector).

Template matching

The template matching method of AP sorting involves
determining the minimum Euclidean distance

between the set of four template APs (ei) and the jth AP (xj).
This involves calculating the sum of the squared differences
between the unknown AP xj and ei at each of the 32 sample
points. This calculation is repeated for all APs of a trial.

The exemplar APs, discussed above, serve as the templates
for each sensillum’s neural responses. SAPID (Smith et
al., 1990) is a commercially available template matching
program for the DOS/Windows platform.

Principal components

The method of principal components analysis (PCA) em-
ploys the discrete Karhunen–Loeve expansion (Fukunaga,
1990) or Hotelling transformation, and uses the exemplar
APs of each sensillum to determine a small number of
features that can be used to classify APs. The values of the
features are determined by the degree to which an AP that
is to be classified resembles (projects onto) each of the
principal components (PC) that have been selected. The
PCs onto which we are projecting are the eigenvectors of
the composite correlation matrix having the N largest
corresponding eigenvalues.

An estimate of the individual covariance matrix for the ith
neuron is obtained by summing over all Mi of the outer
products

of the differences between each AP (wm,i) in the ith class
ensemble and the exemplar that is associated with the ith
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Figure 3 Peak amplitude relative density functions of the four medial
ensembles. The mode of each ensemble’s histogram occurs at a distinct
voltage level; however, there is overlap between the tails of the four
distributions.

Figure 4 The first 0.25 s of a typical medial inositol AP train. The onset
artifact that occurs during the first 25 ms of the sequence is ignored. The
phasic portion occurs during the interval immediately following the onset
artifact to ~150 ms. The tonic phase begins at ~150 ms and lasts for the
remainder of the stimulation.
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class. The composite covariance matrix is formed by
summing the individual covariance matrices

for each of the constituent neurons of a sensillum. Next, the
composite covariance matrix is orthogonalized [see
Gram-Schmidt orthogonalization in Strang (1988)] to
produce a matrix whose columns represent an orthonormal
basis of the composite covariance matrix’s vector space.
Each column is an eigenvector, pk, k = 1, . . . , N, of the
composite covariance matrix, and the eigenvectors with the
largest corresponding eigenvalues are selected as the PCs.

The objective when using the PC method is to reduce the
dimensionality of the classification problem while retaining
a sufficient amount of information to adequately classify the
transformed APs. The value of each eigenvalue (variability)
serves as a measure of the amount of  information that is
represented by the corresponding eigenvector. Figure 5 is a
plot of the amount of information (variability) contained in
the first N PCs and the corresponding percentage of APs
that are misclassified. For example, the first five PCs contain
98% of the information and result in a misclassification of
7.2% of the total ensemble of APs. The percentage of mis-
classified APs converges to the lower bound of 7% by using
the first six PCs.

The inner product of an AP  and the  principal  com-
ponents

fk = xj
T·pk k = 1, . . . , N j = 1, . . . , M

represents the degree to which the AP projects onto each
PC. The  amount  that an  AP  projects  onto  the kth PC
represents the value of the kth feature (fk).

Artificial neural network classifier

Artificial neural networks represent a collection of
information processing procedures that are capable of
adapting their internal states to ‘learn’ a relation between a
set of inputs and the corresponding outputs. There are
many different architectures and training algorithms which
can be employed to form an ANN (Wasserman, 1989;
Zurada, 1992).

For our AP classifier we implemented a two-layer feed-
forward ANN using the error back-propagation supervised
training procedure (see Appendix for more details). The
ANN is composed of two layers of processing elements
(PEs) (see Figure 6). In the literature, PEs are also referred
to as (artificial) neurons or perceptrons (Wasserman, 1989;
Zurada, 1992).

This version of ANN functions in two modes. The first
mode is a training mode where the ANN is presented with a
training set with which the training algorithm adjusts the
internal state of the ANN until the error between the actual

outputs and the desired outputs is minimized. Figure 7 plots
the training set that was used to develop our ANN classifier.
The training set was composed of thirty-four 36-element
association vectors. The first 32 elements of  each associa-
tion vector constitute a prototype AP, the remaining four
elements representing the desired output associated with the
prototype (e.g. if the prototype is an inositol AP, the desired
output vector would be [1 –1 –1 –1]).

The second mode of ANN operation is as a feed-forward
classifier. The internal state of the ANN remains fixed. The
individual APs of unknown origin that have been elicited by
more complex chemical mixtures are classified using I/O
relations that were ‘learned’ during the training mode. All of
the PEs perform the same mathematical operation. Each
input element x[i] is multiplied by the corresponding
connection weight w[i]. The sum over all x[i] serves as the
argument to the activation function, which in our case is the
hyperbolic tangent function [i.e. g(x) = tanh(x·w)]. The value
produced by the activation function serves either as the
input to each PE of the next layer [yj = g(x)] or as the output
of the ANN [zk = g(y)]. The result produced by the jth
hidden layer PE is the weighted sum of all of the input
values. The value produced by the kth output PE (zk) is a
weighted sum of the values produced by all hidden layer PEs
(i.e. each output is a composite function of all of the input
elements).

Methods
As the main goal of this study was to improve AP
classification, asn ensemble of typical APs was compiled to
provide an objective comparison of the performance of
each classifier. APs were extracted from multiple 1 s trials
that were generated  by each  of four  reference neurons.
The ensemble consisted of 775 APs of known origin
(249 inositol; 116 glucose; 177 canna; 233 KCl) that were
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Figure 5 This figure shows plots of both the percent misclassified and
percentage of total variability (information) as a function of the number of
principle components (PC) used to form the classifier. Both parameters have
reached their optimal bounds by the sixth PC.
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recorded from the medial styloconica of a single animal.
The APs that were extracted from each trial were visually
inspected to eliminate any obvious noise-corrupted APs
(e.g. temporally superimposed APs). The entire ensemble
was presented to each classifier (i.e. template matching,
PCA and ANN).

As an additional validation of classifier performance, we
compared classification results of the ANN with SAPID
Tools. A subset of the ensemble was used to form a spike
train which was presented to SAPID for evaluation.

In addition to improving the classification technique,
we were interested in determining whether the classifiers
could be used to sort APs recorded across multiple trials of
the reference compounds. The classifiers were formed using
derived  prototypical waveforms (e.g. ensemble averages)
and a small subset of raw spikes. The chronology of the
individual APs was preserved to evaluate the across-trial
applicability of the classifiers.

Figure 6 Diagram of the architecture of the two-layer feed-forward ANN classifier. The circles that represent the nodes of the input layer are simply storage
registers for the 32 sample points of a AP. The squares on the diagram represent processing elements (PE). The hidden layer contains three PEs labeled H1,
H2 and H3. The output layer contains four PEs labeled with their corresponding class. The node labeled H3 is expanded to illustrate the internal components
of a PE. Each PE sums the weighted inputs from the registers of the preceding layer. The result (net) serves as the argument to the activation function which
in our case is the hyperbolic tangent function. The output of the activation function is stored in a register for use by the succeeding layer.

Figure 7 Plot of the ANN training set. APs plotted using dark gray lines are
individual APs while the waveforms shown with light gray lines are trial
averages (see Figure 9 and Appendix). These individual APs are raw
waveforms that occurred during the phasic region of a recording elicited by
the associated reference compound.
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Further, we were interested in determining if  the classi-
fiers that were formed by data elicited from one animal
could be used to classify APs that were produced by
different animals. This would suggest that the reference
neurons produce APs that are a characteristic of the species.
Recordings from several different  animals  were used to
evaluate the across-animal applicability of the classifiers.
The APs were extracted from multiple trials and from a wide
range of reference compound concentrations.

Results

Tonic response

The  three  AP  classification methods  were compared  by
presenting all of the individual waveforms that comprise
the four  reference compound  ensembles to  each of the
classifiers. Table 1 contains the classification results for
each reference neuron’s ensemble. The percentage correctly
classified by each classification method is shown under the
corresponding column-title. The ANN technique performed
extremely well in separating all four AP types. The other two
techniques identified inositol and KCl APs equally well but
misclassified many of the glucose and canna APs. This is
not surprising considering the high degree of overlap in the
distributions of peak amplitudes of these two APs (Figure
3). All of the techniques performed perfectly when applied
to the inositol-evoked APs. APs produced by the KCl
referenced neuron were also classified extremely well by all
three methods.

Both the template matching and PCA methods showed a
sharp increase in misclassifications of the glucose and canna
APs. Both methods produced roughly the same percentage
of errors, although the PCA was slightly weaker when
classifying glucose APs. The fact that misclassification
occurred between glucose and canna APs is not surprising.
Referring back to Figure 3, the high degree of overlap of the
peak amplitude (the maximum separation of distributions
occurs here) distributions predicts problems. What is
surprising is how well the ANN classifier performed in the
presence of this distribution overlap.

The ANN’s superior performance can be attributed to the
use of the training set (see  Figure 7). The training  set
consists of multiple prototype APs for each reference
neuron. Each neuron’s set of APs exhibits variability at
practically each sample point. This variability within the
training sets allows the ANN to ‘learn’ some representation
of the amplitude distributions within each neuron’s proto-
type set and between the reference neurons’ sets. On the
other hand, the PCA and template methods use only the
average values, represented by the exemplars, to produce
classification results.

Phasic response

Table 2 contains the results for APs from the phasic period.
The ANN classifier outperformed both template matching

and PCA when presented with phasic APs. Canna APs have
a pronounced increase in amplitude during the phasic
period, and therefore it is not surprising that they are often
misclassified by all three methods. Again, the ANN per-
formed best because it uses a training set that includes this
variability. The glucose and KCl APs do not change shape
appreciably during the phasic period and therefore are
classified as well as in the tonic period.

Inter-animal applicability

A classifier that is sufficiently robust to accommodate
across-animal variability would eliminate the need for
generating a training set on each animal and would reduce
operator bias by applying the same criteria to all data sets.
The three classifiers discussed above were formed with APs
from the animal designated A-1. The results for inositol
recordings from five different animals were analyzed. The
first animal, B-1, was recorded at the same time using the
same chemical preparation of inositol as animal A-1. The
next three animals (B-2, B-3 and B-4) were recorded at four
different concentrations (0.3, 1.0, 1.5 and 3.0 mM) of
inositol  as  part of a separate dose–response study. The
recordings from the last animal, B-5, were obtained during
another experiment using inositol  at an extremely high
concentration (100 mM). Recordings from animal B-5 were

Table 1 Comparison of results of the three classification methods:
tonic-phase responses of the four chemosensory neurons of the medial
styloconicum of a tobacco hornworm larva (animal H-6) to six trials of
each of the four reference compounds

Reference
neuron
ensemble

Total no. of
tonic phase
APs

Template
% correct

PCA
% correct

ANN
% correct

Inositol 182 100 100 100
Glucose 74 91 88 99
Canna 152 88 89 95
KCl 186 98 99 98

The body of the table contains the number of each type of APs presented
to the classifiers and the percentage correctly classified by each of the
three methods. Reference compounds and their concentrations are: 1
mM inositol, 100 mM glucose, canna extract and 2.5 M KCl.

Table 2 Comparison of classification results of the three methods on
the phasic-phase of the medial sensillum of animal H-6

Neuron Total no. of
phasic APs

Template
% correct

PCA
% correct

ANN
% correct

Inositol 67 87 87 96
Glucose 42 92 92 86
Canna 25 56 56 80
KCl 47 100 98 96

Results are tabulated as percent correctly classified.
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obtained bilaterally, from both the left and right medial
sensilla. These data thus provide responses across a wide
concentration range, across animals, and from both left and
right sides.

Each of the classifiers was presented all of the inositol
data from all five animals. All three methods were able to
correctly classify 100% of the APs in some of the trials.
Several of the trials contained APs that resulted in increased
levels of misclassification. The lowest percentage   of
correctly classified APs within any trial for the ANN
classifier was 91%, for PCA it was 2% and for the template
method 3%. Thus the ANN was consistently superior across
all concentrations, across animals, and from both left and
right sides than were the other two methods.

SAPID comparison

As an additional validation of the ANN classifier’s
performance,  the  ANN  results  were compared with the
classification   results produced by SAPID Tools. The
evaluation was performed by presenting a test set consisting
of 200 APs of known origin to both the SAPID classifier
and the ANN classifier. The test set was composed of 50
APs from each of the four class ensembles. The 50 APs from
a given class were selected by taking every qth AP from the
class ensemble. The value of q was determined by dividing
the total number of APs in a class ensemble by 50 (the
desired number of spikes per ensemble) and then rounding
off to the nearest integer value. The APs that constitute
a class ensemble are stored in the order that they were
extracted from the raw AP train and from the first trial to
the last. Selecting every qth spike results in roughly equal
numbers of APs from both phases of a trial and from all of
the trials that constitute an ensemble.

For the SAPID evaluation an input file was generated
in the required  format. The file was composed of four
subsequences, one for each of the four classes of APs.
Each subsequence was constructed by concatenating the
corresponding class APs in chronological order. The ‘spike

train’ (see Figure 8) was formed by merging together the four
subsequences.

SAPID correctly extracted 200 spikes after the proper
threshold was set. SAPID requires the entry of three
parameters prior to classification: (i) template deviation
(TD); (ii) spike deviation (SD); and (iii) minimum number
of APs (MC) to form a template. To find an optimal set of
parameters requires manually searching the entire three-
dimensional parameter space. To minimize the search time,
the SAPID documentation recommends setting the value of
SD to be 1.5 times the value of TD. The minimum number
of spikes to form a template was set at four spikes. This
value was found to minimize the number of classification
errors and fixing this value further reduced the search
process.

The value of TD was incremented through the range of
integers from 5 to 20. At each increment of TD, the value of
SD was incremented through a range of values centered at
one and a half times TD. Any set of parameters that resulted
in the formation of four templates was examined further.
The parameter settings {TD = 6, SD = 10, MC = 4} resulted
in the minimum percentage of APs misclassified and was
selected as the optimal set of parameters. Using the optimal
set of parameters, SAPID misclassified 18% of the APs in
the test set. When presented with the same test set, the ANN
classifier misclassified only 6% of the APs.

An experienced SAPID Tools user can employ all of the
available tools to classify all of the APs. The manual
classifications are subjective and require a great deal of
operator time. For example, classification of six trials
elicited by one of the reference compounds required over
1 h when using SAPID. The same set required a couple of
minutes using the ANN classifier.  One of our goals in
this study was to eliminate operator bias and produce
real-time results that are available to the operator as the
electrophysiological recordings are being made. Our method
classifies all of the extracted APs within several seconds
without the need for operator input.

Figure 8 The spike train that was used for SAPID Tools analysis. To form the simulated 1 s sequence, 50 APs were selected from each of the four class
ensembles. The first 0.25 s contains inositol APS, the second 0.25 s contains glucose APs, followed by canna and finally KCl.
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Discussion
We have presented a new method for separating APs
generated by multiple chemosensory neurons that are
mixed together within a single recording. The separation
is performed by a classifier that employs a two-layer
feed-forward ANN with three hidden-layer neurons.
Template matching and PCA, two well-known classifiers,
are discussed and applied to the same data set for com-
parison. The ANN classifier is flexible enough to handle
both tonic and phasic region APs and is more robust than
the conventional methods in dealing with across-animal
trials.

The conventional approach in classifying APs within a
single-channel recording is to focus on the tonic phase of the
recording. This avoids the problem of changing AP shape
that is observed during the phasic response portion of  an
AP train. The ANN classifier performed better than either
the PCA  or  the  template method when classifying APs
that occurred during the tonic phase. By following the
conventional approach of focusing only on the tonic phase
and ignoring the phasic response some information is lost
which may be important. For example, Dethier (1973)
proposed that feeding decisions by blowflies could be made
on the basis of this phasic information. Therefore we
attempted to develop a method that would utilize all of the
available information. Accordingly, the ANN training set
was augmented with phasic APs (inositol and canna) to
form a classifier that was an improvement over the other two
methods when classifying both phasic and tonic APs. The
performance of the resulting ANN was relatively robust
when challenged with phasic APs. This flexibility in forming
the ANN’s training set, in conjunction with the ANN’s
ability to learn amplitude distributions rather than simply
averages, are two significant advantages the ANN possesses
over the PCA and template methods.

The robustness of the ANN is also demonstrated by its
superior applicability across animals and concentrations.
The ANN formed with data from one animal can classify
data from other animals (and at other stimulus concentra-
tions) much more reliably than can the PCA and template
techniques. This could be an important feature to consider
in the design of  a simple and quick classification process.
Once the ANN is trained, it is ready to classify new data
(from representative animals of the same species) without
retraining. These results also suggest a biologically import-
ant corollary, namely that the unique AP shapes produced
by these chemosensory neurons are characteristic of the
species.

We anticipate that further improvements in precision may
be achieved by using temporal information and iterative
processing.
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Appendix: Artificial Neural Network—
Development of Current Configuration
Several characteristics are used to distinguish the architecture of
an ANN: (i) feed-forward or recurrent architecture; (ii) the number
of layers of processing elements (note that the set of input nodes
of a feed-forward ANN is not counted as a layer because the nodes
provide only storage, not processing); and (iii) method of training
used to alter its internal state, i.e. either supervised or unsupervised
training. Supervised training employs a training set that includes
the prototype inputs to be learned and the desired outputs that
the ANN must assign to each prototype. The training set for an
unsupervised ANN contains only prototypes; the ANN self-
organizes to produce outputs for each group of prototypes. In our
case the prototype APs are formed by averaging all APs that are
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produced by a reference neuron during a single trial. The exemplar
APs, which are discussed throughout the paper, are formed by
averaging all of the prototype APs associated with a given ref-
erence neuron.

Feed-forward  ANNs, which are composed of no more than
two hidden layers, have been shown to be universal nonlinear
approximators, capable of approximating any relation between
input and output spaces (Zurada, 1992). Currently there are
no rules available to predetermine the number of hidden layers
or the number of neurons per hidden layer that ultimately will
be necessary to adequately implement an input–output relation.
Thus, large numbers of trials were necessary to arrive at an
acceptable architecture. The number of nodes that make up the
input layer is fixed by the number of samples that constitute an AP
(32 in this case), and the number of output neurons also is fixed by
the desired number of categories (four in this case, representing the
four unique AP classes).

Various two-layer and three-layer feed-forward ANNs were
tested during the development process. The number of neurons per
hidden layer was varied from 3 to 100 neurons. In theory the more
neurons per layer, the more likely the ANN is to learn the given
relationship. On the other hand, increasing the number of neurons
increases the amount of time required to achieve some minimum
level of error used to terminate the learning process. The archi-
tecture that was finally selected consisted of a two-layer ANN with
three hidden-layer neurons. Figure 6 is a diagram of the ANN
architecture (for simplicity, only 3 of the 32 input nodes are shown)
that was determined to be the best for our classification problem.

It is important to consider the settings of the various learning
parameters when designing the ANN. The list of parameters
includes: (i) learning coefficient (η); (ii) momentum factor (µ); (iii)
range of initial connection weight values; (iv) epoch size; and (v)
learning rate transition. Large values of η cause large steps to be
taken during the learning process while small values result in small
changes in the interconnection weights. It might seem desirable to
routinely use large steps to expedite the learning process; however,
if the class separation is very narrow, large values will cause the
ANN to oscillate in the area of the separation, never minimizing
the overall error level enough to terminate the training process.
Setting the value of η very small will ensure that the ANN can
distinguish between classes that are very similar, but it may take an
unacceptably long time to find the boundary between the classes.
These parameters appear to be application-specific and require
searching the domain of potential values to find the best settings.

To determine a nearly optimal set of parameter values, the
parameter space was partitioned and the end points of the subsets
were used as parameter settings. The regions that resulted in
the lowest squared-error and fastest training time were further
subdivided, and the end points of each subregion were used as
training parameters. The process was repeated at increasingly finer
levels until acceptable levels of squared-error and training time
were achieved. As an example from the current application, the
learning rate coefficient (η) is a continuous variable with range
[0,1]. One method of determining an optimal value for η is parti-
tioning the range into 10 equal subintervals while holding all other
parameters constant. The interval between 0 and 0.1 resulted in a
trained network. The subinterval (i.e. [0, 0.1]) was partitioned into
10 equal subintervals. The process of subdividing was continued

until no ANN performance improvement was achievable. The final
value of η for our application was 0.039 for the hidden-layer
neurons and 0.019 for the output-layer neurons. The time
consuming search for an optimal value of η can be eliminated by
using a modified back-propagation algorithm that constantly
adjusts the value of η as training progresses (Vogl, 1988). Use
of this algorithm not only eliminated the tedious task of searching
for an optimal value of η but also was found to converge faster
when compared with the standard back-propagation algorithm
employing a fixed value for η.

Our system was developed using C-code modules with
parameter modifications expedited with NeuralWare (Aspen
Technologies, Pittsburgh, PA) to graphically display the effects
of parameter modifications on the ANN. We then moved it to
MATLAB (MathWorks, Boston, MA), which allowed us to
implement  the entire  system,  from  data  acquisition  (via  .mex
files) through behavior prediction, within a single cross-platform
environment that also supports a graphical user interface (GUI)
to make the operation user friendly. End-users are not limited
to a few predefined displays, but can use built-in MATLAB
functions to manipulate and display data in any convenient
manner. MATLAB is cross-platform, and therefore this data
analysis system can be used with any hardware platform for which
a MATLAB run-time program is available.

In addition to the values of the various parameters employed in
training, the content of the training set is important if the ANN
classifier is to be maximally effective. The training set must contain
a sufficient number of examples to permit the ANN to learn the
distributions associated with each AP type. However, as the size of
the training set grows, the training time will increase significantly.
To minimize training time while including the inherent variability
of each AP type, we averaged all of the APs from a given trial to
form a single ‘prototype AP’ for that trial (see Figure 9). Training
the ANN with these prototypes resulted in very good classifica-
tions within the tonic region of an AP train, but it did not perform
as well during the phasic portion of the same AP train. However,
by adding individual APs (see Figure 7) that occurred early in the
phasic region to the original training set, the modified ANN
correctly classified all phasic inositol APs compared with only 65%
by the original ANN.

Figure 9 The individual prototype APs that were used as the original
training set for the ANN classifier. Each of the prototypes is an average AP of
a 1 s trial of the associated reference compound.
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